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The equation of radiative transfer

Ouch... Simplify by ignoring time dependence 
and only looking at the intensity in a specific 
direction:

by our group (Cox, 2004). The main requirements for this are that the code be able to handle
arbitrary geometries, resolve the large spatial dynamic range in the simulations and that the
large number of calculations necessary can be completed in reasonable time. These requirements
made using an adaptive-mesh grid to represent the simulation geometry a necessity, and the code
was parallelized to handle the demanding computational requirements. While hydrodynamic
simulations would seem like an ideal source for geometry-dependent radiative-transfer problems,
this has not been done more than occasionally. Those cases have either concerned protostars
(Fischer et al., 1994) or star-forming regions (Kurosawa et al., 2004), or if they have simulated
galaxies, have used a very schematic treatment of the radiative transfer (Bekki & Shioya,
2000a,b). To our knowledge, this work is the first that combines high-resolution hydrodynamic
simulations of galaxies with a full radiative-transfer model. The results of the interacting-galaxy
simulations are described in Chapter 4.

While there exist a number of implementations of Monte-Carlo radiative transfer codes
(Gordon et al., 2001; Misselt et al., 2001), none of these are publicly available. This is in marked
contrast to hydrodynamic codes, of which several are publicly available. As a service to the
community, the author is making Sunrise public, which will relieve anyone interested in studying
radiative transfer through dust from having to write their own code.

The organization of this paper is as follows: in section 2.3, an overview of the Monte-
Carlo method is given. Section 2.4 describes the core radiative-transfer algorithm, while sec-
tion 2.5 describes the additional steps necessary to apply the radiative-transfer calculations to
the output of hydrodynamic simulations. In section 2.6 implementation details are given, and
in section 3 we apply the model to simulations of isolated spiral galaxies as an illustration of
its capabilities.

2.2 The Radiative-Transfer Problem

In order to set the stage, a (very) brief introduction to the radiative-transfer problem
is given here. Readers are seriously encouraged to consult a textbook on radiation, such as Shu
(1991), for more information.

The radiative-transfer problem is the problem of calculating the propagation of radi-
ation through a medium which may emit, absorb or scatter the radiation. This amounts to
solving an equation, known as the radiative-transfer equation (RTE), which in its full glory
looks like (Shu, 1991):

1
c

∂Iν

∂t
+ k̂ ·∇Iν =

1
4π

ρjν − ρκabs
ν Iν − ρκsca

ν Iν + ρκsca
ν loop

�
φν(k̂, k̂�)Iν(k̂�)dΩ� . (2.1)

The dependent variable, Iν , is the “specific intensity”, defined by

dE = Iν(k̂,x, t)k̂ · dA dΩ dν dt . (2.2)

In other words, it is the amount of energy per unit time per area per solid angle per frequency
interval flowing in direction k̂.

The terms on the right-hand side of Equation 2.1 represent emission of radiation,
adding to the intensity; absorption and scattering of radiation into another direction, subtract-
ing from the intensity; and finally the addition to the intensity from radiation scattered into
the direction from other directions. It is also not uncommon for the emission, jν , to depend on
the radiation intensity, for example through heating of a blackbody. The full radiative-transfer

6

whereequation is thus a six-dimensional, often nonlinear, integro-differential equation, and it is not

surprising that analytic solutions in general do not exist!

Astronomical systems evolve slowly enough that the time dependence in Equation 2.1

often can be ignored, at which point we have

k̂ ·∇Iν + ρκνIν = ρ

�
jν

4π
+ κsca

ν Φν

�
, (2.3)

where κν is the total opacity and Φν is the integral in Equation 2.1.

Further restricting the scope of the equation, we can look at the intensity in a specific

direction and get

dIν

dx
+ ρκνIν = ρ

�
jν

4π
+ κsca

ν Φν

�
, (2.4)

which begins to look tractable. The optical depth τ is defined by dτ = ρκν dx so the RTE can

be written in terms of optical depth as

dIν

dτ
+ Iν =

jν

4πκν
+

κsca
ν

κν
Φν ≡ Sν , (2.5)

where Sν is known as the source function. This now looks simple, but deceptively so because

Sν depends on the spatial position x, not on the optical depth τ . Nevertheless, the optical

depth is a very useful variable.

2.3 The Monte-Carlo Method

The Monte-Carlo method is a way of solving equations by random sampling. For

example, π can be determined by uniformly sampling points in the range ([−1, 1], [−1, 1]) in

the 2-D plane. The area of the square As = 4, and the area of the inscribed (unit) circle Ac = π.

Given the fact that the number of points that fall within an area is proportional to that area,

and assuming we sample Ns number of points within the square, we see that

lim
Ns→∞

N(r < 1)

Ns
=

A(r < 1)

As
=

π

4
. (2.6)

Hence, π is calculated as

π ≈ 4
n(r < 1)

Ns
. (2.7)

Looking at a more complicated example, a simple version of the RTE including only

absorption can be extracted from Equation 2.4:

dI

dx
= −κI . (2.8)

This can be solved by noting that

dI

dx
= −κI ⇔ dI

I
= −κdx (2.9)

or, given that I ∝ Nphotons, the probability that a photon is absorbed can be expressed as

∆N

N
= P ( absorption within ∆x) = −κ∆x . (2.10)
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by our group (Cox, 2004). The main requirements for this are that the code be able to handle
arbitrary geometries, resolve the large spatial dynamic range in the simulations and that the
large number of calculations necessary can be completed in reasonable time. These requirements
made using an adaptive-mesh grid to represent the simulation geometry a necessity, and the code
was parallelized to handle the demanding computational requirements. While hydrodynamic
simulations would seem like an ideal source for geometry-dependent radiative-transfer problems,
this has not been done more than occasionally. Those cases have either concerned protostars
(Fischer et al., 1994) or star-forming regions (Kurosawa et al., 2004), or if they have simulated
galaxies, have used a very schematic treatment of the radiative transfer (Bekki & Shioya,
2000a,b). To our knowledge, this work is the first that combines high-resolution hydrodynamic
simulations of galaxies with a full radiative-transfer model. The results of the interacting-galaxy
simulations are described in Chapter 4.

While there exist a number of implementations of Monte-Carlo radiative transfer codes
(Gordon et al., 2001; Misselt et al., 2001), none of these are publicly available. This is in marked
contrast to hydrodynamic codes, of which several are publicly available. As a service to the
community, the author is making Sunrise public, which will relieve anyone interested in studying
radiative transfer through dust from having to write their own code.

The organization of this paper is as follows: in section 2.3, an overview of the Monte-
Carlo method is given. Section 2.4 describes the core radiative-transfer algorithm, while sec-
tion 2.5 describes the additional steps necessary to apply the radiative-transfer calculations to
the output of hydrodynamic simulations. In section 2.6 implementation details are given, and
in section 3 we apply the model to simulations of isolated spiral galaxies as an illustration of
its capabilities.
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(1991), for more information.

The radiative-transfer problem is the problem of calculating the propagation of radi-
ation through a medium which may emit, absorb or scatter the radiation. This amounts to
solving an equation, known as the radiative-transfer equation (RTE), which in its full glory
looks like (Shu, 1991):

1
c

∂Iν

∂t
+ k̂ ·∇Iν =

1
4π

ρjν − ρκabs
ν Iν − ρκsca

ν Iν + ρκsca
ν loop

�
φν(k̂, k̂�)Iν(k̂�)dΩ� . (2.1)

The dependent variable, Iν , is the “specific intensity”, defined by

dE = Iν(k̂,x, t)k̂ · dA dΩ dν dt . (2.2)

In other words, it is the amount of energy per unit time per area per solid angle per frequency
interval flowing in direction k̂.

The terms on the right-hand side of Equation 2.1 represent emission of radiation,
adding to the intensity; absorption and scattering of radiation into another direction, subtract-
ing from the intensity; and finally the addition to the intensity from radiation scattered into
the direction from other directions. It is also not uncommon for the emission, jν , to depend on
the radiation intensity, for example through heating of a blackbody. The full radiative-transfer
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equation is thus a six-dimensional, often nonlinear, integro-differential equation, and it is not

surprising that analytic solutions in general do not exist!

Astronomical systems evolve slowly enough that the time dependence in Equation 2.1

often can be ignored, at which point we have

k̂ ·∇Iν + ρκνIν = ρ

�
jν

4π
+ κsca

ν Φν

�
, (2.3)

where κν is the total opacity and Φν is the integral in Equation 2.1.

Further restricting the scope of the equation, we can look at the intensity in a specific

direction and get

dIν

dx
+ ρκνIν = ρ

�
jν

4π
+ κsca

ν Φν

�
, (2.4)

which begins to look tractable. The optical depth τ is defined by dτ = ρκν dx so the RTE can

be written in terms of optical depth as

dIν

dτ
+ Iν =

jν

4πκν
+

κsca
ν

κν
Φν ≡ Sν , (2.5)

where Sν is known as the source function. This now looks simple, but deceptively so because

Sν depends on the spatial position x, not on the optical depth τ . Nevertheless, the optical

depth is a very useful variable.

2.3 The Monte-Carlo Method

The Monte-Carlo method is a way of solving equations by random sampling. For

example, π can be determined by uniformly sampling points in the range ([−1, 1], [−1, 1]) in

the 2-D plane. The area of the square As = 4, and the area of the inscribed (unit) circle Ac = π.

Given the fact that the number of points that fall within an area is proportional to that area,

and assuming we sample Ns number of points within the square, we see that

lim
Ns→∞

N(r < 1)

Ns
=

A(r < 1)

As
=

π

4
. (2.6)

Hence, π is calculated as

π ≈ 4
n(r < 1)

Ns
. (2.7)

Looking at a more complicated example, a simple version of the RTE including only

absorption can be extracted from Equation 2.4:

dI

dx
= −κI . (2.8)

This can be solved by noting that

dI

dx
= −κI ⇔ dI

I
= −κdx (2.9)

or, given that I ∝ Nphotons, the probability that a photon is absorbed can be expressed as

∆N

N
= P ( absorption within ∆x) = −κ∆x . (2.10)
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the “source function”

without sources, we quickly see that

So, to obtain I(x), we can make N Monte-Carlo trials, walking the rays in steps of ∆x and at

each step drawing a random number to see whether the ray was absorbed or not. By conducting

this random process, our result will converge towards

N(x) = N0e
−κx

, or (2.11)

I(x) = I0e
−κx , (2.12)

which is the analytical result.

2.3.1 Drawing Random Numbers

Drawing random numbers is at the heart of the Monte-Carlo method. The ability

to draw random numbers with various probability distributions is essential. Many computer

codes with the ability to generate (pseudo) random numbers with a uniform distribution on

the interval [0, 1] exist. Sunrise uses the implementation of the Mersenne Twister MT19937

algorithm (Matsumoto & Nishimura, 1998) provided by the Blitz++ library (Veldhuizen, 1998).

Given a Probability Distribution Function (PDF) f(x) for a stochastic variable X,

defined such that P (X ∈ [x, x + ∆x]) = f(x)∆x, the normalizing condition is

u�

l

f(x�) dx� = 1 (2.13)

where l and u are the lower and upper limits of X. If we generate a random number R, uniformly

distributed on [0, 1], solving the equation

x�

l

f(x�) dx� = R (2.14)

yields a number x with a PDF f(x) (Lux & Koblinger, 1991). (R will be used throughout this

paper to denote a realization of a stochastic variable distributed uniformly over [0, 1]. This

means that R in one expression is never equal to R in another, just that they share the same

PDF.)

As an example, let us derive the PDF of the optical depth at which a photon is

absorbed. Photons propagating through an absorbing medium will be absorbed after traversing

different optical depths — most are absorbed quickly, before traversing unit optical depth,

while a few make it through many optical depths. How are these optical depths distributed?

Expressed in terms of optical depth, the simple version of the RTE from Equation 2.8 looks

like
dI

dτ
= −I ⇔ dI

I
= −dτ ⇒ I(τ) = I0e

−τ . (2.15)

The change in intensity over an interval in optical depth is

I(τ + dτ)− I(τ) = I0(e
−τ−dτ − e−τ

) = I0e
−τ

(e−dτ − 1) ≈ −I0e
−τ

dτ , (2.16)

so that ����
dI

I0
(τ)

���� = e−τ
dτ . (2.17)
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seems pretty simple
what’s the big deal then?

that’s in 1D, monochromatic...
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scatter/absorb them according to opacity
make an image from rays that reach the observer
as rays traverse the volume, they sample the 
radiation intensity distribution
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Monte Carlo Radiation Transfer

Advantages:
very general
easily handles arbitrary geometries or 
complicated media (scattering 
characteristics)

Disadvantages:
solution contains Poisson noise
converges as !N, slowly
fails in the limit of very large τ
computationally expensive
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So, to obtain I(x), we can make N Monte-Carlo trials, walking the rays in steps of ∆x and at

each step drawing a random number to see whether the ray was absorbed or not. By conducting

this random process, our result will converge towards

N(x) = N0e
−κx

, or (2.11)

I(x) = I0e
−κx , (2.12)

which is the analytical result.

2.3.1 Drawing Random Numbers

Drawing random numbers is at the heart of the Monte-Carlo method. The ability

to draw random numbers with various probability distributions is essential. Many computer

codes with the ability to generate (pseudo) random numbers with a uniform distribution on

the interval [0, 1] exist. Sunrise uses the implementation of the Mersenne Twister MT19937

algorithm (Matsumoto & Nishimura, 1998) provided by the Blitz++ library (Veldhuizen, 1998).

Given a Probability Distribution Function (PDF) f(x) for a stochastic variable X,

defined such that P (X ∈ [x, x + ∆x]) = f(x)∆x, the normalizing condition is

u�

l

f(x�) dx� = 1 (2.13)

where l and u are the lower and upper limits of X. If we generate a random number R, uniformly

distributed on [0, 1], solving the equation

x�

l

f(x�) dx� = R (2.14)

yields a number x with a PDF f(x) (Lux & Koblinger, 1991). (R will be used throughout this

paper to denote a realization of a stochastic variable distributed uniformly over [0, 1]. This

means that R in one expression is never equal to R in another, just that they share the same

PDF.)

As an example, let us derive the PDF of the optical depth at which a photon is

absorbed. Photons propagating through an absorbing medium will be absorbed after traversing

different optical depths — most are absorbed quickly, before traversing unit optical depth,

while a few make it through many optical depths. How are these optical depths distributed?

Expressed in terms of optical depth, the simple version of the RTE from Equation 2.8 looks

like
dI

dτ
= −I ⇔ dI

I
= −dτ ⇒ I(τ) = I0e

−τ . (2.15)

The change in intensity over an interval in optical depth is

I(τ + dτ)− I(τ) = I0(e
−τ−dτ − e−τ

) = I0e
−τ

(e−dτ − 1) ≈ −I0e
−τ

dτ , (2.16)

so that ����
dI

I0
(τ)

���� = e−τ
dτ . (2.17)

8

Remember

this means that

?

So, to obtain I(x), we can make N Monte-Carlo trials, walking the rays in steps of ∆x and at

each step drawing a random number to see whether the ray was absorbed or not. By conducting

this random process, our result will converge towards

N(x) = N0e
−κx

, or (2.11)

I(x) = I0e
−κx , (2.12)

which is the analytical result.

2.3.1 Drawing Random Numbers

Drawing random numbers is at the heart of the Monte-Carlo method. The ability

to draw random numbers with various probability distributions is essential. Many computer

codes with the ability to generate (pseudo) random numbers with a uniform distribution on

the interval [0, 1] exist. Sunrise uses the implementation of the Mersenne Twister MT19937

algorithm (Matsumoto & Nishimura, 1998) provided by the Blitz++ library (Veldhuizen, 1998).

Given a Probability Distribution Function (PDF) f(x) for a stochastic variable X,

defined such that P (X ∈ [x, x + ∆x]) = f(x)∆x, the normalizing condition is

u�

l

f(x�) dx� = 1 (2.13)

where l and u are the lower and upper limits of X. If we generate a random number R, uniformly

distributed on [0, 1], solving the equation

x�

l

f(x�) dx� = R (2.14)

yields a number x with a PDF f(x) (Lux & Koblinger, 1991). (R will be used throughout this

paper to denote a realization of a stochastic variable distributed uniformly over [0, 1]. This

means that R in one expression is never equal to R in another, just that they share the same

PDF.)

As an example, let us derive the PDF of the optical depth at which a photon is

absorbed. Photons propagating through an absorbing medium will be absorbed after traversing

different optical depths — most are absorbed quickly, before traversing unit optical depth,

while a few make it through many optical depths. How are these optical depths distributed?

Expressed in terms of optical depth, the simple version of the RTE from Equation 2.8 looks

like
dI

dτ
= −I ⇔ dI

I
= −dτ ⇒ I(τ) = I0e

−τ . (2.15)

The change in intensity over an interval in optical depth is

I(τ + dτ)− I(τ) = I0(e
−τ−dτ − e−τ

) = I0e
−τ

(e−dτ − 1) ≈ −I0e
−τ

dτ , (2.16)

so that ����
dI

I0
(τ)

���� = e−τ
dτ . (2.17)
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This indicates that the probability of absorption is

P ( absorption between τ, τ + dτ) = e−τ . (2.18)

This distribution is normalized, i.e.

∞�

0

P (τ) dτ = 1 . (2.19)

Once the probability distribution is known, the optical depth τi at which a photon

will interact with a medium can be a randomly generated using Equation 2.14:

τi�

0

e−τ �
dτ � = R ⇒ τi = − ln(1−R) ≡ − lnR . (2.20)

(The last equivalence in Equation 2.20 above may look bizarre until it is realized that 1−R has

the same PDF as R!) Equation 2.20 is the formula used to randomly draw interaction optical

depths in the code.

2.4 The Radiative-Transfer Algorithm

As explained in the preceding section, the radiative-transfer problem will be solved

through statistical sampling of the processes of photon emission, scattering and absorption.

Rather than simulating individual photons that are either elastically scattered or absorbed, the

simulated entity is a “photon packet”, whose intensity is proportional to the number of photons

in the packet. This makes possible the use of inherently probabilistic constructs like the dust

grain single-scattering albedo (the ratio of the scattering cross-section to the total (extinction)

cross-section) to determine the intensity of scattered radiation, rather than explicitly Monte-

Carlo sampling the absorption and scattering processes, which is much less efficient. In general,

analytic calculations are more efficient than explicit Monte-Carlo realization and should be used

whenever possible, as will be seen below.

In Sunrise, the dust opacity is represented on an adaptive grid, the characteristics

of which are described in Section 2.5.3. In the case of continuously distributed emission, the

emissivity of the medium is also represented on this grid, but it is also possible to use arbitrary

sources of emission such as point sources or external diffuse or collimated radiation. Within a

cell, sources and dust are treated as being uniformly mixed. The use of an adaptive grid allows

the representation of arbitrary dust and emission geometries, limited only by the amount of

computer time dedicated to running the problem. (In principle, memory is also a limitation,

but in practice it has been found that memory use is much less of a constraint.)

2.4.1 Ray Tracing

The simplest implementation of the Monte-Carlo radiative-transfer algorithm follows

a single photon through the medium. This photon is emitted in a random direction and can

then scatter and/or be absorbed. Eventually the photon leaves the medium in some direction,

which in general is not the direction from which the object is being imaged. As mentioned

earlier, the efficiency can be greatly increased by calculating some probabilities analytically by

9

the probability of 
absorption is

i.e.:
the length a photon goes before it interacts
is a random variable distributed as e-τ 

MC example: photon propagation
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Other processes

in this way, sample the relevant processes
position and direction of emission
length of propagation
direction of scattering

If you can apply an analytic solution instead 
of sampling it with MC, do it

example: use grain albedo to change the 
statistical “weight” instead of separately 
sampling absorption and scattering
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Problem: if we randomly 
sample the ray random 
walk, practically none will 
reach the “camera”
increase the efficiency 
(by a lot) by calculating 
the probability that a ray 
will reach the camera
Example: scattering

“next event estimator” or “peel-off”

2.4.3 Ray Propagation

The first step is to calculate the flux that would result from the emission, if the ray

had been emitted in the direction of the observer:

Fi,0 = LiIi,0e
−τobs

i,0 Φe(r̂
obs
i,0 )

1

d2
i,0

(2.29)

where τobs
i,0 is the optical depth between the site of emission and the observer, Φe is the angular

distribution of emitted radiation and r̂obs
i,0 the direction vector from the site of emission to the

observer. (In the case of isotropic emission, Φ =
1
4π .) di,0 is the distance from the site of

emission to the observer.

Following the calculation of the direct flux, the ray is propagated in the direction

r̂i,0 determined earlier (Eq 2.26). The propagation is done from one cell to another, keeping

track of the optical depth traversed by the ray. At each step, the optical depth is increased by

∆τ = κ∆�, where κ is the opacity in the cell and ∆� is the path length traversed by the ray

inside the cell.

If the optical depth is small, most rays will leave the simulation medium and not

contribute to the scattered flux. To increase the efficiency of the calculation of the scattered

flux, Sunrise uses the concept of “forced scattering” (Cashwell & Everett, 1959), in which every

ray is forced to contribute to the scattered flux. In the “forced scattering” scenario, the total

optical depth τe
i,0 from the point of emission xe to the edge of the medium in the direction of

propagation is calculated. The ray is then split up into two parts. One part, Ii,0e
−τe

i,0 , will

leave the medium without interaction, while Ii,0

�
1− e−τe

i,0

�
will interact somewhere along the

path. The optical depth of this interaction, which is in the range [0, τe
i,0], is drawn randomly

using the formula

τi,0 = − ln

�
1−R

�
1− e−τe

i,0

��
, (2.30)

which is a variant of Equation 2.20 obtained by restricting the range of optical depths to [0, τe
i,0]

and renormalizing the distribution. The part of the ray that leaves the medium is dropped, as

the flux resulting from direct radiation already has been taken into account with Equation 2.29.

The part of the ray that does interact will have an intensity after the interaction of

Ii,1 = Ii,0a
�
1− e−τe

i,0

�
, (2.31)

where a is the dust grain albedo. The luminosity absorbed in the grid cell where the interaction

takes place is

Ai,1 = LiIi,0(1− a)

�
1− e−τe

i,0

�
. (2.32)

The part of the ray left after the interaction is scattered into a new direction by the dust

grain. Analogously to Equation 2.29, the flux resulting from the part of the ray which would

be scattered towards the observer and which would not interact on its way there, is

Fi,1 = LiIi,1e
−τobs

i,1 Φs(r̂i,0, r̂
obs
i,1 )

1

d2
i,1

, (2.33)

where Φs(r̂, r̂
�) is the scattering “phase function”, i.e. the angular distribution

dI
dΩ

for scattering

of rays from direction r̂ into direction r̂�. In most cases, the phase function will depend only on

the angle between the two directions (exceptions to this would be e.g. non-spherical dust grains

12

τob
s

d

“realized”
scattering
direction

calculate
contribution
to camera
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“Forced scattering”

If medium is very optically 
thin, most rays pass 
through without scattering

Poor signal in the 
scattered light

Can calculate analytically 
what fraction of the ray 
will leave and which will 
scatter somewhere on the 
way
The location of the 
scattering event is then 
drawn from [0,τexit]

τexit<<1

e-τexit

1-e-τexit
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“Russian Roulette”

If a ray scatters many 
times, its intensity 
becomes low
Don’t want to keep 
tracking a bunch of rays 
that won’t make much 
contribution
But to preserve energy 
conservation, we can’t 
just drop the ray.

ray with I<0.01

P=1/6P=5/6

I=I*6

carry on
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Polychromatic ray tracing

All these distributions depend on wavelength, 
so a separate random walk is necessary for 
each wavelength
In Sunrise, the computational cost of tracing 
the ray is dominated by walking the ray 
through the octree
This means:

wavelength resolution is expensive!
Uncorrelated noise in spectra

Can we do something more efficient?

Wednesday, August 11, 2010



Patrik Jonsson – HIPACC Summer School 2010

Biased sampling

Biasing – drawing from a 
different distribution than 
that sampled
Suppose we want to 
sample f(x)
We can do that while 
drawing from g(x)
IF we also weight every 
sample xi by wi=f(xi)/g(xi)
only requirement is that
g(x)>0 ∀x where f(x)>0

Can draw numbers from
a gaussian distribution

trivial but:
what if we need to 
sample the wings??
we can also draw 
numbers from a 

uniform distribution
by giving each sample 

a gaussian weight
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Polychromatic ray tracing

Mean free path varies with 
wavelength
Can only draw scattering 
point correctly for one 
wavelength - λref

The other wavelengths are 
weighted according to the 
probability of them 
interacting at the drawn 
point
Converges to correct 
distribution for all 
wavelengths

λ λref
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Polychromatic ray tracing λ λref
SUNRISE: polychromatic dust radiative transfer 7

However, if the dust grain temperature distribution and the spectral
energy distribution (SED) of the dust emission are to be calculated
self-consistently, the (wavelength-dependent) radiation field in the
cell must be determined (Guhathakurta & Draine 1989). If the ab-
sorbed luminosity is known, the radiation field J c in the cell can be
calculated as

Jc(λ) = Ac

4πρcκabsVc
, (27)

where κ abs is the absorption opacity of the dust and V c is the volume
of the cell. Because only absorption events contribute to the signal,
this method suffers from large Monte Carlo noise in regions where
the number of interactions are few, for example in highly refined
cells with small volume. In fact, because the radiative transfer algo-
rithm used by SUNRISE is so much more efficient at getting signal to
the cameras than the simplest Monte Carlo implementation, fewer
rays need to be traced. This means that, since each ray interacts
with the medium at most a few times, the number of absorption
events determining A (λ) in equation (27) is small and the quantity
noisy. SUNRISE uses another method, described by Lucy (1999) and
Niccolini, Woitke & Lopez (2003), that takes advantage of the fact
that, physically, the radiation intensity is determined by the number
of rays (photons) traversing a volume, regardless of the probability
of absorption. In this scheme,

Jc =
∑

i, j $%i, j,cnIi, j

4πVc
, (28)

where $%i, j,c is the path length during which the ith ray, after the
jth interaction, passes through cell c. Since many more rays pass
through a given cell than are absorbed in it, this method has superior
accuracy. The only complication is in the case of forced scattering.
In this case the ray intensity in the cells traversed before the forced
scattering takes place is I i,0, but the part of the ray that leaves the
medium without interaction also has to be taken into account. That
part of the ray has lower intensity; it gives a contribution to J c

corresponding to Ii,0e−τ e
i,0 in the cells traversed after the interaction

point.

3.8 Polychromatic ray tracing

Looking back at the preceding sections, it is possible to identify
the points where wavelength dependence poses conceptual prob-
lems to a procedure where all wavelengths are included in every
ray. Clearly, emission of rays and calculation of the flux reaching
the observer either directly (equation 12) or from a point of scat-
tering (equation 19) pose no problems: these formulae are analytic
calculations that can be performed for any number of wavelengths
simply by replacing the quantities I i τ obs

i, j , and a with vectors of
numbers. Polychromatic calculations of the direct flux have already
been done in the SKIRT code (Baes, Dejonghe & Davies 2005a). The
problems arise where interaction optical depths and scattering di-
rections are sampled from the appropriate probability distributions,
because these probability distributions depend on wavelength. For
example, rays of shorter wavelength will tend to travel shorter dis-
tance before interacting, since the dust opacity generally increases
towards shorter wavelengths. This means an interaction point can
only be drawn in a statistically correct way for one wavelength at a
time, and the same objection applies to the scattering angle drawn
using equation (20). However, the ability to use biased distributions
opens up the possibility to compensate for the fact that the proba-
bility distributions will only be correct for one wavelength. (This is
known as ‘path stretching’.) The proper way of doing this will now
be examined.

As was derived in Section 2.3, the probability distribution func-
tion of where a ray interacts with the medium is

dP(τ ) = e−τ dτ. (29)

Suppose an interaction optical depth τ ref is drawn for some reference
wavelength λref. The probability of another wavelength λ interacting
at the same point is then

dP [τ (λ)] = e−τ (λ)dτ (λ) = e−(τ (λ)/τref)τref

[
τ (λ)
τref

]
dτref. (30)

The necessary biasing factor wλ is the ratio of the probabilities at
wavelengths λ and λref:

wλ = P [τ (λ)]
P [τref]

= eτref−τ (λ)

[
τ (λ)
τref

]
. (31)

To compensate for the biased probability distribution, the intensity
of the ray at different wavelengths at the point of interaction should
be multiplied by the weighting factor wλ before calculating scattered
or absorbed luminosity.

In cases where forced scattering is used, the probability distribu-
tion from which interaction points are drawn is different, and so is
also the weighting factor. The correct wλ when forced scattering is
used it is

wλ = eτref−τ (λ)

[
τ (λ)
τref

][
1 − e−τ e

ref

1 − e−τ e(λ)

]
. (32)

Finally, the biased distribution of scattering angles must be ac-
counted for. Compared to the optical depths, this is quite straightfor-
ward: the probability of scattering into a certain direction is given
by the scattering phase function 's(θ ), so if a scattering angle θ

is drawn at the reference wavelength the weighting factor which
should be applied to the ray intensity after scattering will be

wλ = 's(θ, λ)
's(θ, λref)

. (33)

Energy conservation, in a statistical sense, must be maintained in
the polychromatic calculation; energy flux is the product of proba-
bility and ray intensity, and any biasing scheme simply trades prob-
abilities for intensities.

The possibility of calculating all wavelengths simultaneously was
noted by Juvela (2005), who argued that it would not be advanta-
geous since the opacity is a strong function of wavelength and the
large bias factors necessary probably would result in increased er-
rors. It is true that the errors for a fixed number of rays probably
would increase for wavelengths where the dust opacity is very dif-
ferent from what it is at the reference wavelength, but the differ-
ential errors between different wavelengths are minimized. This is
clearly illustrated in the example spectra calculated in Section 5.4.
Because every wavelength is uncorrelated in the monochromatic
calculation, the spectral shape becomes very noisy in regions of low
signal-to-noise ratio, but this is not the case with the polychromatic
calculation. (The use of ‘correlated Monte Carlo’ for perturbation
analysis builds on the same principle, the stochastic effects are min-
imized by correlating the random walks in the perturbed and un-
perturbed cases.) The increased noise at wavelengths far away from
the reference wavelength is alleviated by the fact that with the poly-
chromatic algorithm more rays can contribute to each wavelength.
This is because the computational costs of tracing rays in SUNRISE is
dominated by propagating rays from cell to cell during the random
walk. As long as the vector operations for doing the calculation at
many wavelengths is not the dominant computational cost, the extra
wavelengths are obtained at little cost.

C© 2006 The Author. Journal compilation C© 2006 RAS, MNRAS 372, 2–20
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However, if the dust grain temperature distribution and the spectral
energy distribution (SED) of the dust emission are to be calculated
self-consistently, the (wavelength-dependent) radiation field in the
cell must be determined (Guhathakurta & Draine 1989). If the ab-
sorbed luminosity is known, the radiation field Jc in the cell can be
calculated as

Jc(λ) = Ac

4πρcκabsVc
, (27)

where κ abs is the absorption opacity of the dust and V c is the volume
of the cell. Because only absorption events contribute to the signal,
this method suffers from large Monte Carlo noise in regions where
the number of interactions are few, for example in highly refined
cells with small volume. In fact, because the radiative transfer algo-
rithm used by SUNRISE is so much more efficient at getting signal to
the cameras than the simplest Monte Carlo implementation, fewer
rays need to be traced. This means that, since each ray interacts
with the medium at most a few times, the number of absorption
events determining A (λ) in equation (27) is small and the quantity
noisy. SUNRISE uses another method, described by Lucy (1999) and
Niccolini, Woitke & Lopez (2003), that takes advantage of the fact
that, physically, the radiation intensity is determined by the number
of rays (photons) traversing a volume, regardless of the probability
of absorption. In this scheme,

Jc =
∑

i, j $%i, j,cnIi, j

4πVc
, (28)

where $%i, j,c is the path length during which the ith ray, after the
jth interaction, passes through cell c. Since many more rays pass
through a given cell than are absorbed in it, this method has superior
accuracy. The only complication is in the case of forced scattering.
In this case the ray intensity in the cells traversed before the forced
scattering takes place is I i,0, but the part of the ray that leaves the
medium without interaction also has to be taken into account. That
part of the ray has lower intensity; it gives a contribution to Jc
corresponding to Ii,0e−τ e

i,0 in the cells traversed after the interaction
point.

3.8 Polychromatic ray tracing

Looking back at the preceding sections, it is possible to identify
the points where wavelength dependence poses conceptual prob-
lems to a procedure where all wavelengths are included in every
ray. Clearly, emission of rays and calculation of the flux reaching
the observer either directly (equation 12) or from a point of scat-
tering (equation 19) pose no problems: these formulae are analytic
calculations that can be performed for any number of wavelengths
simply by replacing the quantities I i τ obs

i, j , and a with vectors of
numbers. Polychromatic calculations of the direct flux have already
been done in the SKIRT code (Baes, Dejonghe & Davies 2005a). The
problems arise where interaction optical depths and scattering di-
rections are sampled from the appropriate probability distributions,
because these probability distributions depend on wavelength. For
example, rays of shorter wavelength will tend to travel shorter dis-
tance before interacting, since the dust opacity generally increases
towards shorter wavelengths. This means an interaction point can
only be drawn in a statistically correct way for one wavelength at a
time, and the same objection applies to the scattering angle drawn
using equation (20). However, the ability to use biased distributions
opens up the possibility to compensate for the fact that the proba-
bility distributions will only be correct for one wavelength. (This is
known as ‘path stretching’.) The proper way of doing this will now
be examined.

As was derived in Section 2.3, the probability distribution func-
tion of where a ray interacts with the medium is

dP(τ ) = e−τ dτ. (29)
Suppose an interaction optical depth τ ref is drawn for some reference
wavelength λref. The probability of another wavelength λ interacting
at the same point is then

dP [τ (λ)] = e−τ (λ)dτ (λ) = e−(τ (λ)/τref)τref

[
τ (λ)
τref

]
dτref. (30)

The necessary biasing factor wλ is the ratio of the probabilities at
wavelengths λ and λref:

wλ = P [τ (λ)]
P [τref]

= eτref−τ (λ)

[
τ (λ)
τref

]
. (31)

To compensate for the biased probability distribution, the intensity
of the ray at different wavelengths at the point of interaction should
be multiplied by the weighting factor wλ before calculating scattered
or absorbed luminosity.

In cases where forced scattering is used, the probability distribu-
tion from which interaction points are drawn is different, and so is
also the weighting factor. The correct wλ when forced scattering is
used it is

wλ = eτref−τ (λ)

[
τ (λ)
τref

][
1 − e−τ e

ref

1 − e−τ e(λ)

]
. (32)

Finally, the biased distribution of scattering angles must be ac-
counted for. Compared to the optical depths, this is quite straightfor-
ward: the probability of scattering into a certain direction is given
by the scattering phase function 's(θ ), so if a scattering angle θ
is drawn at the reference wavelength the weighting factor which
should be applied to the ray intensity after scattering will be

wλ = 's(θ, λ)
's(θ, λref)

. (33)

Energy conservation, in a statistical sense, must be maintained in
the polychromatic calculation; energy flux is the product of proba-
bility and ray intensity, and any biasing scheme simply trades prob-
abilities for intensities.

The possibility of calculating all wavelengths simultaneously was
noted by Juvela (2005), who argued that it would not be advanta-
geous since the opacity is a strong function of wavelength and the
large bias factors necessary probably would result in increased er-
rors. It is true that the errors for a fixed number of rays probably
would increase for wavelengths where the dust opacity is very dif-
ferent from what it is at the reference wavelength, but the differ-
ential errors between different wavelengths are minimized. This is
clearly illustrated in the example spectra calculated in Section 5.4.
Because every wavelength is uncorrelated in the monochromatic
calculation, the spectral shape becomes very noisy in regions of low
signal-to-noise ratio, but this is not the case with the polychromatic
calculation. (The use of ‘correlated Monte Carlo’ for perturbation
analysis builds on the same principle, the stochastic effects are min-
imized by correlating the random walks in the perturbed and un-
perturbed cases.) The increased noise at wavelengths far away from
the reference wavelength is alleviated by the fact that with the poly-
chromatic algorithm more rays can contribute to each wavelength.
This is because the computational costs of tracing rays in SUNRISE is
dominated by propagating rays from cell to cell during the random
walk. As long as the vector operations for doing the calculation at
many wavelengths is not the dominant computational cost, the extra
wavelengths are obtained at little cost.
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Polychromatic ray tracing
Now each wavelength is not a separate 
random walk but instead just a vector 
operation – much faster!
No (uncorrelated) noise between wavelengths
Makes the very high wavelength resolution 
feasible

Nothing’s for free though...
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Polychromatic ray tracing

SUNRISE: polychromatic dust radiative transfer 7
However, if the dust grain temperature distribution and the spectral
energy distribution (SED) of the dust emission are to be calculated
self-consistently, the (wavelength-dependent) radiation field in the
cell must be determined (Guhathakurta & Draine 1989). If the ab-
sorbed luminosity is known, the radiation field Jc in the cell can be
calculated as

Jc(λ) = Ac

4πρcκabsVc
, (27)

where κ abs is the absorption opacity of the dust and V c is the volume
of the cell. Because only absorption events contribute to the signal,
this method suffers from large Monte Carlo noise in regions where
the number of interactions are few, for example in highly refined
cells with small volume. In fact, because the radiative transfer algo-
rithm used by SUNRISE is so much more efficient at getting signal to
the cameras than the simplest Monte Carlo implementation, fewer
rays need to be traced. This means that, since each ray interacts
with the medium at most a few times, the number of absorption
events determining A (λ) in equation (27) is small and the quantity
noisy. SUNRISE uses another method, described by Lucy (1999) and
Niccolini, Woitke & Lopez (2003), that takes advantage of the fact
that, physically, the radiation intensity is determined by the number
of rays (photons) traversing a volume, regardless of the probability
of absorption. In this scheme,

Jc =
∑

i, j $%i, j,cnIi, j

4πVc
, (28)

where $%i, j,c is the path length during which the ith ray, after the
jth interaction, passes through cell c. Since many more rays pass
through a given cell than are absorbed in it, this method has superior
accuracy. The only complication is in the case of forced scattering.
In this case the ray intensity in the cells traversed before the forced
scattering takes place is I i,0, but the part of the ray that leaves the
medium without interaction also has to be taken into account. That
part of the ray has lower intensity; it gives a contribution to Jc
corresponding to Ii,0e−τ e

i,0 in the cells traversed after the interaction
point.

3.8 Polychromatic ray tracing

Looking back at the preceding sections, it is possible to identify
the points where wavelength dependence poses conceptual prob-
lems to a procedure where all wavelengths are included in every
ray. Clearly, emission of rays and calculation of the flux reaching
the observer either directly (equation 12) or from a point of scat-
tering (equation 19) pose no problems: these formulae are analytic
calculations that can be performed for any number of wavelengths
simply by replacing the quantities I i τ obs

i, j , and a with vectors of
numbers. Polychromatic calculations of the direct flux have already
been done in the SKIRT code (Baes, Dejonghe & Davies 2005a). The
problems arise where interaction optical depths and scattering di-
rections are sampled from the appropriate probability distributions,
because these probability distributions depend on wavelength. For
example, rays of shorter wavelength will tend to travel shorter dis-
tance before interacting, since the dust opacity generally increases
towards shorter wavelengths. This means an interaction point can
only be drawn in a statistically correct way for one wavelength at a
time, and the same objection applies to the scattering angle drawn
using equation (20). However, the ability to use biased distributions
opens up the possibility to compensate for the fact that the proba-
bility distributions will only be correct for one wavelength. (This is
known as ‘path stretching’.) The proper way of doing this will now
be examined.

As was derived in Section 2.3, the probability distribution func-
tion of where a ray interacts with the medium is

dP(τ ) = e−τ dτ. (29)
Suppose an interaction optical depth τ ref is drawn for some reference
wavelength λref. The probability of another wavelength λ interacting
at the same point is then

dP [τ (λ)] = e−τ (λ)dτ (λ) = e−(τ (λ)/τref)τref

[
τ (λ)
τref

]
dτref. (30)

The necessary biasing factor wλ is the ratio of the probabilities at
wavelengths λ and λref:

wλ = P [τ (λ)]
P [τref]

= eτref−τ (λ)

[
τ (λ)
τref

]
. (31)

To compensate for the biased probability distribution, the intensity
of the ray at different wavelengths at the point of interaction should
be multiplied by the weighting factor wλ before calculating scattered
or absorbed luminosity.

In cases where forced scattering is used, the probability distribu-
tion from which interaction points are drawn is different, and so is
also the weighting factor. The correct wλ when forced scattering is
used it is

wλ = eτref−τ (λ)

[
τ (λ)
τref

][
1 − e−τ e

ref

1 − e−τ e(λ)

]
. (32)

Finally, the biased distribution of scattering angles must be ac-
counted for. Compared to the optical depths, this is quite straightfor-
ward: the probability of scattering into a certain direction is given
by the scattering phase function 's(θ ), so if a scattering angle θ
is drawn at the reference wavelength the weighting factor which
should be applied to the ray intensity after scattering will be

wλ = 's(θ, λ)
's(θ, λref)

. (33)

Energy conservation, in a statistical sense, must be maintained in
the polychromatic calculation; energy flux is the product of proba-
bility and ray intensity, and any biasing scheme simply trades prob-
abilities for intensities.

The possibility of calculating all wavelengths simultaneously was
noted by Juvela (2005), who argued that it would not be advanta-
geous since the opacity is a strong function of wavelength and the
large bias factors necessary probably would result in increased er-
rors. It is true that the errors for a fixed number of rays probably
would increase for wavelengths where the dust opacity is very dif-
ferent from what it is at the reference wavelength, but the differ-
ential errors between different wavelengths are minimized. This is
clearly illustrated in the example spectra calculated in Section 5.4.
Because every wavelength is uncorrelated in the monochromatic
calculation, the spectral shape becomes very noisy in regions of low
signal-to-noise ratio, but this is not the case with the polychromatic
calculation. (The use of ‘correlated Monte Carlo’ for perturbation
analysis builds on the same principle, the stochastic effects are min-
imized by correlating the random walks in the perturbed and un-
perturbed cases.) The increased noise at wavelengths far away from
the reference wavelength is alleviated by the fact that with the poly-
chromatic algorithm more rays can contribute to each wavelength.
This is because the computational costs of tracing rays in SUNRISE is
dominated by propagating rays from cell to cell during the random
walk. As long as the vector operations for doing the calculation at
many wavelengths is not the dominant computational cost, the extra
wavelengths are obtained at little cost.

C© 2006 The Author. Journal compilation C© 2006 RAS, MNRAS 372, 2–20

Drawback:

if τ(λ) very different from τref

w can be large increased noise

Bad situations:
very large optical depths
rapidly changing opacity (e.g. lines!)

Mitigated by splitting rays
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Fig. 7. SED for two disk inclinations i as given on top of each panel. Each curve provides the mean value of the five RT simulations for the four

computed models with different optical depth. The midplane optical depth is given in parenthesis labeling each curve. In both panels solid lines

show results for the most optically thin disk, dotted lines for a disk having τv = 1, dot-dashed lines for a disk with τv = 10 and dashed lines

for the most optically thick model. Diamonds provide the black-body emission from the naked star. The slope of the SED at long wavelengths

depends only on the dust properties and is plotted in each panel with a solid line.

MCTRANSF deviates slightly more than 10%. STEINRAY

shows 10% deviations at the inner boundary and slightly higher

deviations (but always less than 15%) far from the star, at about

900 AU. The vertical cut at 2 AU shows an agreement better

than 2.5% till 10◦ from the disk midplane. Closer to the disk

midplane, deviations are larger for MC3D and STEINRAY but

always smaller than 4%.

4.3. Spectral energy distribution

The emerging spectra for the four models having different opti-

cal depths are shown in Fig. 7 at two disk inclinations. The left

panel provides the results for an almost face-on disk (disk incli-

nation i equal to 12.5◦) while the right panel gives the result for

an almost edge-on disk (i = 77.5◦). Each curve represents the

mean value of the five RT simulations for the specific model,

whose optical depth is given in parenthesis above the curve. On

the y axis, we plot λ Fλ in [W m−2] where Fλ is the flux den-

sity at a distance equal to the star radius. We also superimpose

in diamonds the black body radiation arising from the star in

order to visualize how efficiently the circumstellar disk repro-

cesses the stellar energy. We note that all the codes have the

correct slope at long wavelengths. This slope depends only on

the dust properties and is plotted as solid line in both panels

(λFλ ∝ λ−5). At 0.55 µm the drop in luminosity amounts to

about a factor of 20 going from the most optically thin to the

most optically thick model and for a disk inclination of 77.5◦.

Since the differences among the codes are too small to be

visible in a logarithmic plot, we provide separately the per-

centage of difference for the four models and for three disk

inclinations (see Fig. 8). RADICAL has been chosen as refer-

ence code. For the most optically thin case, we also compare

our results with the semi-analytical approach (see Fig. 4). We

find that the agreement of the codes with the semi-analytical

solution is always better than 8%, with the largest deviations

around 0.3 and 40 µm. In the range 0.2–0.7 µm all the codes

predict higher flux in comparison to the semi-analytical so-

lution, while between 10–200 µm a lower flux is obtained.

These deviations arise because the semi-analytical approach in-

cludes scattering only as an extinction term. From the numer-

ical RT calculations it is clear that some photons are scattered

thus enhancing the flux between 0.2 and 0.7 µm. We note that

this wavelength range is exactly where small astronomical sil-

icate grains have the largest scattering efficiency (see Fig. 1).

Therefore, deviations peaking at 0.3 µm are simply explained

by the particular optical data chosen for this benchmark. Those

photons which are scattered cannot contribute to heat the disk.

This explains why RT codes predict a lack of emission at longer

wavelengths. To understand why the largest deficit of photons

is around 40–50 µm, we first compute the temperature at which

most of the disk mass emits (mass average temperature) and

then the corresponding wavelength. For the wavelength calcu-

lation we need to take into account the grain emissivity (Evans

1994). We find a mass average temperature of 40 K which

translates into a wavelength of 50 µm at the maximum emis-

sion. This wavelength is well in agreement with the deviations

shown in Fig. 4. For comparison, the RT codes agree better

than 1.5% at wavelengths shorter than 10 µm for this particular

test case (θ = 12.5◦). At longer wavelengths the results show

a bit more scatter but the agreement is always better than 3%.

Pascucci et al. 2004
2D RT benchmark
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opening angle. This implies that the radiative transfer has to be
simulated both in the optically thick disk and in the optically
thin envelope. The disk geometry and density structure are sim-
ilar to those described by Chiang & Goldreich (1997, 1999) and
successfully applied to study passive disks around T Tauri stars
(Natta et al. 2000). The density distribution provides a steep-
density gradient in the inner part of the disk which could give
rise to numerical problems when solving the RT equation. This
turns out to be an advantage for RT comparison since it allows
to test the codes’ behaviour under extreme conditions. The den-
sity distribution we adopt has the following form

ρ(r, z) = ρ0 × f1(r) × f2(z/h(r))
f1(r) = (r/rd)−1.0

f2(r) = exp
(
−π/4 × (z/h(r))2

)

h(r) = zd × (r/rd)1.125
(4)

with r being the distance from the central star in the disk mid-
plane (

√
x2 + y2) and z the distance from the midplane. Here rd

is half of the disk outer radius (Rout/2) and zd one fourth of
rd (Rout/8). Note that the disk is slightly flared, i.e., the disk
opening angle h(r)/r is exponentially increasing with the dis-
tance from the star. The term f1 provides the radial dependence
of the density distribution. In protoplanetary disks, the vol-
ume density is usually proportional to r−α with α in the range
(1.8 ÷ 2.8) (e.g. Wood et al. 2002; Cotera et al. 2001). For this
benchmark we use α = 1 in order to save CPU time. Both f1
and f2 remain unchanged while ρ0 is chosen so to define dif-
ferent optical depths. We perform calculations for four values
of visual (λ = 550 nm) optical depth, namely τv = 0.1, 1, 10,
100. The optical depth, as seen from the centre, is calculated
along the disk midplane. Since most of the dust is confined in
the midplane, the optical depths we refer to are the highest in
each model. The test case τv = 100 is at the limit of our current
computational capabilities. The resulting total dust mass for the
model with τv = 1(100) is 1.1× 10−6 M# (1.1× 10−4 M#). The
density structure perpendicular to the disk midplane is shown
for the same model in Fig. 2. The RT is calculated for 61 wave-
lengths being distributed nearly equidistantly on a logarith-
mic scale from 0.12–2000 µm. These 61 wavelengths define
the frequency resolution of our computations. In Sect. 4.4 we
also compare two Monte Carlo (MC) codes on a grid with
two times more wavelengths and we discuss the effect of the
frequency resolution on the 2D benchmark. Since anisotropic
scattering is not included in all codes, we consider the scatter-
ing as isotropic. Symbols and values of the model parameters
are summarized in Table 1 for more clarity.

3. RT simulations

3.1. Methods

Similar to hydrodynamical simulations, we can distinguish
particle (Monte Carlo) and grid-based methods to solve the
RT equation numerically (Henning 2001).

In MC simulations the radiation field is partitioned in
equal-energy, monochromatic “photon packets” that are emit-
ted stochastically both by the source and by the surrounding

Table 1. Model parameters.

Symbol Meaning Value

M∗ Stellar mass 1 M#
R∗ Stellar radius 1 R#
T∗ Stellar effective temperature 5800 K
Rout Outer disk radius 1000 AU
Rin Inner disk radius 1 AU
zd Disk height 125 AU
a Grain radius 0.12 µm
ρg Grain density 3.6 g cm−3

τv Optical depth at 550 nm 0.1, 1, 10, 100

Fig. 2. Density structure perpendicular to the disk midplane and cen-
tered on the star for the model with τv = 1. Values are normalized
to the maximum density. The contours provide 0.10, 0.19, 0.28, 0.38,
0.48% of the maximum.

envelope. The optical depth determines the location at which
the packets interact while their albedo defines the probabil-
ity of either scattering or absorption. In the original scheme
(scheme 1) the source and the envelope photon packets are
emitted separately. At first the grains re-emit according to the
absorbed source radiation. Then dust reemission takes also
into account the envelope emission radiation field. Reemission
by the dust is repeated as long as the difference between the
input and the output energy is larger than a chosen thresh-
old. However, the dust reemission, i.e. the repetition of the
Monte Carlo experiment, is time consuming. An alternative
possibility (scheme 2) is to store all radiation exchanges within
the envelope. In this case the Monte Carlo experiment can
be carried out once for all4, but a large amount of computer
memory is needed. A drawback of these two schemes is that
the input luminosity is not automatically conserved during the
simulation. This becomes a serious problem for configurations
with very high optical depths which therefore usually need

4 This is only valid for opacities explicitely independent on the
temperature.
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Table 1. The parameters of the simulated galaxies, adopted from Rocha et al. (2008) and Jonsson et al. (2006).

Model Mvir
a Mb

b Rd
c Zd/Rd

d Rg/Rd
e f g

f f b
g Rb

h V rot
i Z1.3

j dZ/drk Agem τ n

(M!) (M!) (kpc) (kpc) (km s−1) (Z!) (dex kpc−1) (Gyr) (Gyr)

Sbc+ 9.28 × 1011 1.56 × 1011 7.0 0.125 3.0 0.52 0.10 0.60 210 1.12 0.023 13.9 110
Sbc 8.12 × 1011 1.03 × 1011 5.5 0.125 3.0 0.52 0.10 0.45 195 1.00 0.030 13.9 −106
G3 1.16 × 1012 6.22 × 1010 2.8 0.125 3.0 0.20 0.14 0.37 192 1.00 0.058 14.0 10
Sbc- 3.60 × 1011 4.98 × 1010 4.0 0.125 3.0 0.52 0.10 0.40 155 0.70 0.041 13.7 124
G2 5.10 × 1011 1.98 × 1010 1.9 0.2 3.0 0.23 0.08 0.26 139 0.56 0.04 14.0 8.2
G1 2.00 × 1011 7.00 × 109 1.5 0.2 3.0 0.29 0.04 0.20 103 0.40 0.05 11.5 3.7
G0 5.10 × 1010 1.60 × 109 1.1 0.2 3.0 0.38 0.01 0.15 67 0.28 0.06 8.7 1.4

Note. aVirial mass. bBaryonic mass. cStellar-disc scalelength. dRatio of stellar-disc scaleheight and scalelength. eRatio of scalelengths of gas to stellar discs.
fGas fraction (of baryonic mass). gBulge fraction (of baryonic mass). hBulge scale radius. iCircular velocity. jMetallicity at 1.3 scalelengths from the centre
(gas and stars). kMetallicity gradient. lAge of oldest stars (formation time of bulge and oldest disc stars). mExponential time constant of the SFR for the disc
stars.

galaxy models were chosen to agree with observations (Rocha et al.
2008).

3 M O D E L VA L I DAT I O N

In this section, we demonstrate that the radiation-transfer code is
correct and that the simulations performed are converged, establish-
ing trust in the model results. A number of tests of SUNRISE were
performed in J06 and will in general not be repeated here. The ex-
ception is the benchmark problem of Pascucci et al. (2004), which
was only partially done in J06.

3.1 The Pascucci et al. (2004) 2D radiative-transfer
benchmark

To first verify that SUNRISE, including the improvements described
above, give correct results, the comparison with the benchmark
problem of Pascucci et al. (2004) that was done in Section 5.5 of J06
is repeated. This benchmark, consisting of an axisymmetric flared
disc of silicate dust grains illuminated by a central point source, is
designed to mimic the emission from a protostellar disc. Unlike in
J06, infrared emission is now included in SUNRISE, so the comparison
is done over the entire wavelength range instead of the wavelength
range dominated by stellar radiation. For brevity, we also omit the
lower optical depth cases and only present the results from the
most stringent τ = 100 case. For this test, 107 polychromatic rays
were used. The difference between the SUNRISE output SEDs and
the output from the RADICAL code used as the reference by Pascucci
et al. (2004) is shown in Fig. 2.

In general, the agreement is good, within about 4 per cent ex-
cept at wavelengths of around 8 µm where the difference reaches
a maximum of 11 per cent in the edge-on case. This agreement
is well within the internal differences between the various codes
used in the P04 benchmark and mimics the behaviour of several
of these codes. The sensitivity of the feature around 8 µm is likely
due to the importance of resolving the inner edge of the disc where
the hottest dust will be located. It is also worth noting that the
short-wavelength wiggles in the difference must be due to stochas-
tic variations in the RADICAL results, as they are substantially larger
than the uncertainty in the SUNRISE results. The SUNRISE calculation
was done with polychromatic rays, so there is no inherent stochas-
tic wavelength-to-wavelength variation in the results unlike for the
codes that perform an independent calculation for each wavelength.
(The results in J06 differed substantially more from those in P04.

Figure 2. The ratio of the SUNRISE SEDs to the reference (from the RADICAL

code) outputs of the 2D axisymmetric radiation-transfer benchmark of
Pascucci et al. (2004). The outputs are shown for the three different in-
clinations in P04, and the shaded region represents the 1σ variance in the
SUNRISE results as estimated from five different runs with independent ran-
dom number sequences. The agreement is good across all wavelengths. The
largest excursion seen at 8 µm, dominated by hot dust in the inner regions
of the disc near the central star. It is also worth noting that the wiggles in the
difference at UV/visual wavelengths are much larger than the uncertainty
in the SUNRISE calculations, so are likely due to stochastic variations in the
RADICAL results.

The majority of this difference was due to the incorrect truncation
of the disc at a height of only 100 au instead of 1000 au.)

3.2 Convergence concerning the number of rays traced

Having shown that the radiation-transfer calculation reproduces the
results of a non-trivial test case, we now turn to the galaxy simu-
lations. At a most basic level, the convergence of the output SEDs
with regard to the number of rays and grid resolution is the first test.
Fig. 3 shows the Monte Carlo 1σ variance in the SEDs for the Sbc
galaxy viewed from the two extreme inclinations of face-on and
edge-on. The variance is less than 1 per cent at all wavelengths, and
for most wavelengths substantially less, indicating that the number
of rays is sufficient for a well-constrained integrated SED. The re-
quirements are more stringent when the spatial dependence of the
SED is investigated, a matter we return to in Section 4.3.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 403, 17–44

The other codes did 50 calculations,
polychromatic Sunrise did 1...
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Intensity estimator

Want to estimate the mean radiative 
intensity in the grid cells (for determining 
dust temperatures)
Use the “path length estimator” (Lucy 99)

J = sumi(Ii dli)/(4"V)
Ii is the luminosity carried by ray i, dLi the 
path length through the cell, V the cell 
volume
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Parallelization

This method is trivial to parallelize
Each processor shoots its own ray, 
independent of every other
Only need to worry about locking shared 
outputs: camera images and radiation 
intensities in cells
With distributed memory, very different 
approach is needed: domain needs to be 
decomposed, rays need to be shifted from 
processor to processor as they travel
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